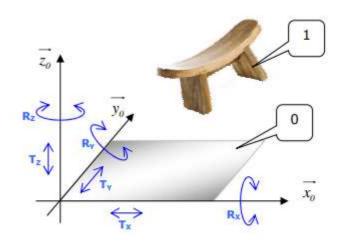
CHAPITRE 8 GÉNIE MÉCANIQUE

2/3

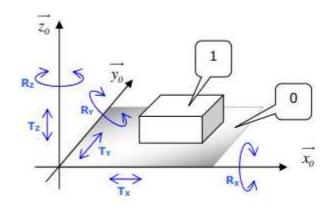
3 - Contact entre solides

=> F6.


Déf. : deux solides sont en liaison si au moins un contact entre eux existe.

Nature du contact :

- Point
- Ligne droite
- Ligne curviligne (cercle ou autre)
- Surface plane
- Surface non plane (cylindrique, sphérique, etc.)


=> Voir exercices feuille 2

Un solide libre, sans contact, possède 6 DDL : 3 TR et 3 ROT.

MOBILITES DE 1 / 0	
T _X = 1	R _X = 1
T _Y = 1	R _Y = 1
T _Z = 1	R _Z = 1

Si contact, au moins 1 DDL est supprimé et des Degrés De Liaison sont créés.

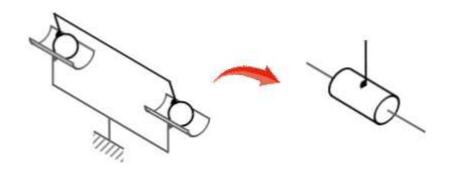
MOBILITES DE 1 / 0	
T _X = 1	R _X = 0
T _Y = 1	R _Y = 0
T _Z = 0	R _Z = 1

4 - Liaisons mécaniques simples

=> Tableau annexe A1

On a différentes liaisons simples (de base) à l'aide desquelles on peut modéliser un mécanisme.

Chaque liaison simple a un symbole (2D ; 3D), un tableau de mobilité (DDL) et une représentation torsorielle (cinématique et statique)


A connaître : PIVOT, GLISSIERE, ROTULE

5 - Liaisons mécaniques composées

Déf. : Si deux solides au au moins deux zones de contact, alors ils sont en liaison composée.

Une liaison composée peut parfois se ramener à une liaison simple.

Ceci établit la différence entre schéma cinématique "minimal" et "non minimal".

- => Voir exercices feuille 3
- => Voir exercices feuille 4

6 - Modélisation des mécanismes

Déf. : mécanisme = ensemble de pièces ou groupes de pièces ayant des mobilités entre elles.

Le modèle s'appelle "schéma cinématique". Le schéma peut être minimal ou non minimal.

=> Voir exercices feuille 5